

JEE-MAIN EXAMINATION-JANUARY 2025

Date: 24/01/2025

Shift : Morning

PHYSICS SECTION-A

Q.1 Consider a parallel plate capacitor of area A (of each plate) and separation 'd' between the plates. If E is the electric field and ϵ_0 is the permittivity of free space between the plates, then potential energy stored in the capacitor is :-

$$\begin{array}{ll} (1) \frac{1}{2} \varepsilon_0 E^2 A d & (2) \frac{3}{4} \varepsilon_0 E^2 A d \\ (3) \frac{1}{4} \varepsilon_0 E^2 A d & (4) \varepsilon_0 E^2 A d \end{array}$$

Q.2 What is the relative decrease in focal length of a lens for an increase in optical power by 0.1 D from 2.5 D ?
[‘D’ stands for dioptrre]
(1) 0.04 (2) 0.40 (3) 0.1 (4) 0.01

Q.3 An air bubble of radius 0.1 cm lies at a depth of 20 cm below the free surface of a liquid of density 1000 kg/m^3 . If the pressure inside the bubble is 2100 N/m^2 greater than the atmospheric pressure, then the surface tension of the liquid in SI unit is (use $g = 10 \text{ m/s}^2$)
(1) 0.02 (2) 0.1 (3) 0.25 (4) 0.05

Q.4 For an experimental expression $y = \frac{32.3 \times 1125}{27.4}$, where all the digits are significant. Then to report the value of y we should write :-
(1) $y = 1326.2$ (2) $y = 1326.19$
(3) $y = 1326.186$ (4) $y = 1330$

Q.5 During the transition of electron from state A to state C of a Bohr atom, the wavelength of emitted radiation is 2000 Å and it becomes 6000 Å when the electron jumps from state B to state C. Then the wavelength of the radiation emitted during the transition of electrons from state A to state B is :-
(1) 3000 Å (2) 6000 Å (3) 4000 Å (4) 2000 Å

Q.6 Consider the following statements :

- A. The junction area of solar cell is made very narrow compared to a photo diode.
- B. Solar cells are not connected with any external bias.
- C. LED is made of lightly doped p-n junction.
- D. Increase of forward current results in continuous increase of LED light intensity.
- E. LEDs have to be connected in forward bias for emission of light.

(1) B, D, E Only (2) A, C Only
(3) A, C, E Only (4) B, E Only

Q7

Q.8

An object of mass 'm' is projected from origin in a vertical xy plane at an angle 45° with the x-axis with an initial velocity v_0 . The magnitude and direction of the angular momentum of the object with respect to origin, when it reaches at the maximum height, will be [g is acceleration due to gravity]

$$(1) \frac{mv_0^3}{2\sqrt{2g}} \text{ along negative z-axis}$$

$$(2) \frac{mv_0^3}{2\sqrt{2}\sigma} \text{ along positive z-axis}$$

$$(3) \frac{mv_0^3}{4\sqrt{2}g} \text{ along positive z-axis}$$

$$(4) \frac{mv_0^3}{4\sqrt{2}g} \text{ along negative z-axis}$$

0.9

The Young's double slit interference experiment is performed using light consisting of 480 nm and 600 nm wavelengths to form interference patterns. The least number of the bright fringes of 480 nm light that are required for the first coincidence with the bright fringes formed by 600 nm light is :-

Q.10

A car of mass 'm' moves on a banked road having radius 'r' and banking angle θ . To avoid slipping from banked road, the maximum permissible speed of the car is v_0 . The coefficient of friction μ between the wheels of the car and the banked road is :-

$$(1) \mu = \frac{v_0^2 + rgtan\theta}{rg - v_0^2tan\theta} \quad (2) \mu = \frac{v_0^2 + rgtan\theta}{rg + v_0^2tan\theta}$$

$$(3) \mu = \frac{v_0^2 - r \tan \theta}{r g + v_0^2 \tan \theta} \quad (4) \mu = \frac{v_0^2 - r \tan \theta}{r g - v_0^2 \tan \theta}$$

Q.11 A uniform solid cylinder of mass 'm' and radius 'r' rolls along an inclined rough plane of inclination 45° . If it starts to roll from rest from the top of the plane then the linear acceleration of the cylinder axis will be :-

(1) $\frac{1}{\sqrt{2}} g$ (2) $\frac{1}{3\sqrt{2}} g$ (3) $\frac{\sqrt{2}g}{3}$ (4) $\sqrt{2}g$

Q.12 A thin plano convex lens made of glass of refractive index 1.5 is immersed in a liquid of refractive index 1.2. When the plane side of the lens is silver coated for complete reflection, the lens immersed in the liquid behaves like a concave mirror of focal length 0.2 m. The radius of curvature of the curved surface of the lens is:-
(1) 0.15 m (2) 0.10 m (3) 0.20 m (4) 0.25 m

Q.13 A particle is executing simple harmonic motion with time period 2 s and amplitude 1 cm. If D and d are the total distance and displacement covered by the particle

in 12.5 s, then $\frac{D}{d}$ is :-

(1) $\frac{15}{4}$ (2) 25 (3) 10 (4) $\frac{16}{5}$

Q.14 A satellite is launched into a circular orbit of radius 'R' around the earth. A second satellite is launched into an orbit of radius 1.03 R. The time period of revolution of the second satellite is larger than the first one approximately by :-
(1) 3% (2) 4.5% (3) 9% (4) 2.5%

Q.15 A plano-convex lens having radius of curvature of first surface 2 cm exhibits focal length of f_1 in air. Another plano-convex lens with first surface radius of curvature 3 cm has focal length of f_2 when it is immersed in a liquid of refractive index 1.2. If both the lenses are made of same glass of refractive index 1.5, the ratio of f_1 and f_2 will be :-
(1) 3 : 5 (2) 1 : 3 (3) 1 : 2 (4) 2 : 3

Q.16 An alternating current is given by
 $I = I_A \sin \omega t + I_B \cos \omega t$. The r.m.s. current will be :-

(1) $\sqrt{I_A^2 + I_B^2}$ (2) $\frac{\sqrt{I_A^2 + I_B^2}}{2}$ (3) $\sqrt{\frac{I_A^2 + I_B^2}{2}}$ (4) $\frac{|I_A + I_B|}{\sqrt{2}}$

Q.17 An electron of mass 'm' with an initial velocity $\vec{v} = v_0 \hat{i}$ ($v_0 > 0$) enters an electric field $\vec{E} = -E_0 \hat{k}$. If the initial de Broglie wavelength is λ_0 , the value after time t would be :-

(1) $\frac{\lambda_0}{\sqrt{1 + \frac{e^2 E_0^2 t^2}{m^2 v_0^2}}}$ (2) $\sqrt{1 - \frac{e^2 E_0^2 t^2}{m^2 v_0^2}} \lambda_0$
(3) λ_0 (4) $\lambda_0 \sqrt{1 + \frac{e^2 E_0^2 t^2}{m^2 v_0^2}}$

Q.18

A parallel plate capacitor was made with two rectangular plates, each with a length of $l = 3$ cm and breadth of $b = 1$ cm. The distance between the plates is $3 \mu\text{m}$. Out of the following, which are the ways to increase the capacitance by a factor of 10?

A. $l = 30$ cm, $b = 1$ cm, $d = 1 \mu\text{m}$
B. $l = 3$ cm, $b = 1$ cm, $d = 30 \mu\text{m}$
C. $l = 6$ cm, $b = 5$ cm, $d = 3 \mu\text{m}$
D. $l = 1$ cm, $b = 1$ cm, $d = 10 \mu\text{m}$
E. $l = 5$ cm, $b = 2$ cm, $d = 1 \mu\text{m}$

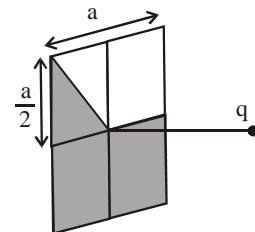
Choose the correct answer from the options given below :

(1) C and E only (2) B and D only
(3) A only (4) C only

Q.19

A force $F = \alpha + \beta x^2$ acts on an object in the x -direction. The work done by the force is 5 J when the object is displaced by 1 m. If the constant $\alpha = 1$ N then β will be
(1) 15 N/m^2 (2) 10 N/m^2 (3) 12 N/m^2 (4) 8 N/m^2

Q.20


An ideal gas goes from an initial state to final state. During the process, the pressure of gas increases linearly with temperature.

A. The work done by gas during the process is zero.
B. The heat added to gas is different from change in its internal energy.
C. The volume of the gas is increased.
D. The internal energy of the gas is increased.
E. The process is isochoric (constant volume process)
Choose the correct answer from the options given below :-
(1) A, B, C, D Only (2) A, D, E Only
(3) E Only (4) A, C Only

Q.21

A square loop of sides $a = 1$ m is held normally in front of a point charge $q = 1$ C. The flux of the electric field

through the shaded region is $\frac{5}{p} \times \frac{1}{\epsilon_0} \frac{\text{Nm}^2}{\text{C}}$, where the value of p is _____.

Q.22

The least count of a screw gauge is 0.01 mm. If the pitch is increased by 75% and number of divisions on the circular scale is reduced by 50%, the new least count will be _____ $\times 10^{-3}$ mm.

Q.23

A wire of resistance 9Ω is bent to form an equilateral triangle. Then the equivalent resistance across any two vertices will be _____ ohm.

Q.35 Which of the following Statements are NOT true about the periodic table?

- The properties of elements are function of atomic weights.
- The properties of elements are function of atomic numbers.
- Elements having similar outer electronic configuration are arranged in same period.
- An element's location reflects the quantum numbers of the last filled orbital.
- The number of elements in a period is same as the number of atomic orbitals available in energy level that is being filled.

Choose the correct answer from the options given below:

(1) A, C and E Only (2) D and E Only
 (3) A and E Only (4) B, C and E Only

Q.36 The carbohydrates "Ribose" present in DNA, is

- A pentose sugar
- present in pyranose form
- in "D" configuration
- a reducing sugar, when free
- in α -anomeric form

Choose the correct answer from the options given below:

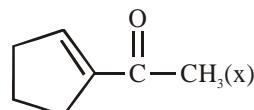
(1) A, C and D Only (2) A, B and E Only
 (3) B, D and E Only (4) A, D and E Only

Q.37 Preparation of potassium permanganate from MnO_2 involves two step process in which the 1st step is a reaction with KOH and KNO_3 to produce

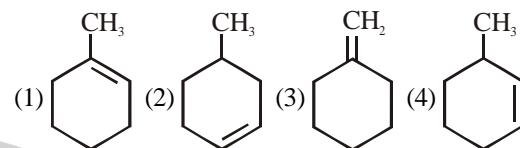
(1) $K_4[Mn(OH)_6]$ (2) K_3MnO_4
 (3) $KMnO_4$ (4) K_2MnO_4

Q.38 The large difference between the melting and boiling points of oxygen and sulphur may be explained on the basis of

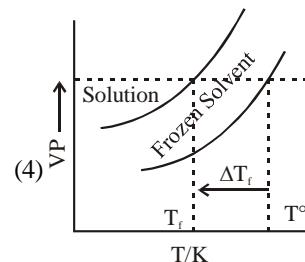
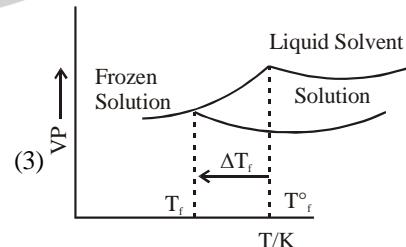
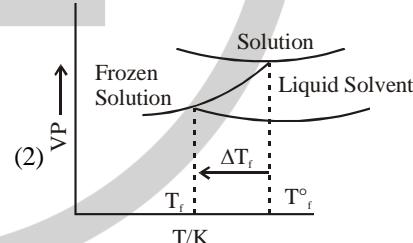
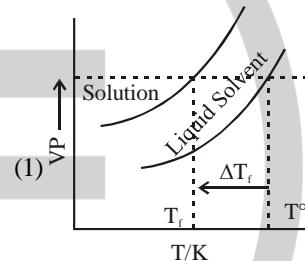
(1) Atomic size (2) Atomicity
 (3) Electronegativity (4) Electron gain enthalpy


Q.39 For a reaction, $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ in a constant volume container, no products were present initially. The final pressure of the system when 50% of reaction gets completed is

(1) 7/2 times of initial pressure
 (2) 5 times of initial pressure
 (3) 5/2 times of initial pressure
 (4) 7/4 times of initial pressure


Q.40 Which of the following arrangements with respect to their reactivity in nucleophilic addition reaction is correct?

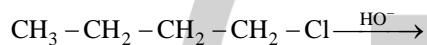
(1) benzaldehyde < acetophenone < p-nitrobenzaldehyde < p-tolualdehyde
 (2) acetophenone < benzaldehyde < p-tolualdehyde < p-nitrobenzaldehyde
 (3) acetophenone < p-tolualdehyde < benzaldehyde < p-nitrobenzaldehyde
 (4) p-nitrobenzaldehyde < benzaldehyde < p-tolualdehyde < acetophenone





Q.41 Aman has been asked to synthesise the molecule

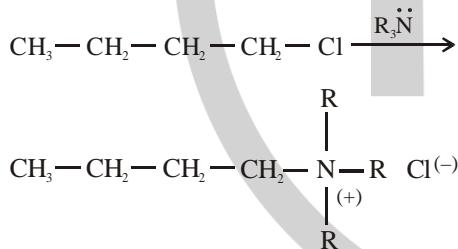
He thought of preparing the molecule using an aldol condensation reaction. He found a few cyclic alkenes in his laboratory. He thought of performing ozonolysis reaction on alkene to produce a dicarbonyl compound followed by aldol reaction to prepare "x". Predict the suitable alkene that can lead to the formation of "x".

Q.42 Consider the given plots of vapour pressure (VP) vs temperature (T/K). Which amongst the following options is correct graphical representation showing ΔT_f depression in the freezing point of solvent in a solution?

Q.43 Which of the following statement is true with respect to H_2O , NH_3 and CH_4 ?

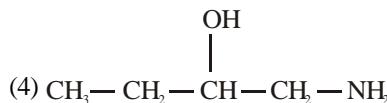
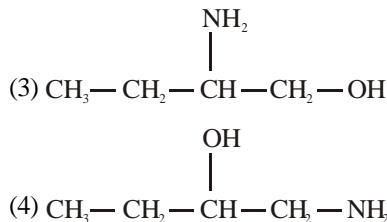
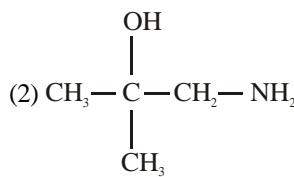
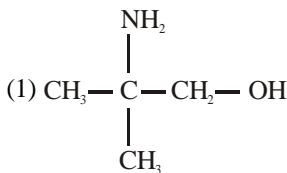
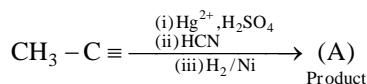

- The central atoms of all the molecules are sp^3 hybridized.
- The $\text{H}-\text{O}-\text{H}$, $\text{H}-\text{N}-\text{H}$ and $\text{H}-\text{C}-\text{H}$ angles in the above molecules are 104.5° , 107.5° and 109.5° respectively.
- The increasing order of dipole moment is $\text{CH}_4 < \text{NH}_3 < \text{H}_2\text{O}$.
- Both H_2O and NH_3 are Lewis acids and CH_4 is a Lewis base
- A solution of NH_3 in H_2O is basic. In this solution NH_3 and H_2O act as Lowry-Bronsted acid and base respectively.

Choose the correct answer from the options given below:


- A, B and C only
- C, D and E only
- A, D and E only
- A, B, C and E only

Q.44 Given below are two statements :

Statement-I : The conversion proceeds well in the less polar medium.






Statement-II : The conversion proceeds well in the more polar medium.

In the light of the above statements, choose the correct answer from the options given below.

- Both statement I and statement II are true
- Both statement I and statement II are false
- Statement I is false but statement II is true
- Statement I is true but statement II is false

Q.45 The product (A) formed in the following reaction sequence is :

Q.46

37.8 g N_2O_5 was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K

The total pressure at equilibrium was found to be 18.65 bar.

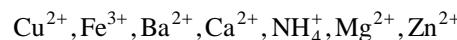
Then, $K_p = \text{_____} \times 10^{-2}$ [nearest integer]

Assume N_2O_5 to behave ideally under these conditions

Given : $R = 0.082 \text{ bar L mol}^{-1} \text{ K}^{-1}$

Q.47

Standard entropies of X_2 , Y_2 and XY_5 are 70, 50 and 110 $\text{JK}^{-1} \text{ mol}^{-1}$ respectively. The temperature in Kelvin at which the reaction


Will be at equilibrium is _____ (Nearest integer)

Q.48

X g of benzoic acid on reaction with aq. NaHCO_3 release CO_2 that occupied 11.2 L volume at STP. X is _____ g.

Q.49

Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with $\text{K}_4[\text{Fe}(\text{CN})_6]$ is :

Q.50

Consider the following reaction occurring in the blast furnace.

'x' kg of iron is produced when 2.32×10^3 kg Fe_3O_4 and 2.8×10^2 kg CO are brought together in the furnace. The value of 'x' is _____. (nearest integer)

{Given : Molar mass of Fe_3O_4 = 232 g mol $^{-1}$

Molar mass of CO = 28 g mol $^{-1}$

Molar mass of Fe = 56 g mol $^{-1}$ }

MATHEMATICS
SECTION-A

Q.51 Let $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 3\hat{i} + \hat{j} - \hat{k}$ and \vec{c} be three vectors such that \vec{c} is coplanar with \vec{a} and \vec{b} . If the vector \vec{c} is perpendicular to \vec{b} and $\vec{a} \cdot \vec{c} = 5$, then $|\vec{c}|$ is equal to

(1) $\frac{1}{3\sqrt{2}}$ (2) 18 (3) 16 (4) $\sqrt{\frac{11}{6}}$

Q.52 In $I(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$, $m, n > 0$, then $I(9, 14) + I(10, 13)$ is

(1) $I(9, 1)$ (2) $I(19, 27)$
 (3) $I(1, 13)$ (4) $I(9, 13)$

Q.53 Let $f: \mathbb{R} - \{0\} \rightarrow \mathbb{R}$ be a function such that $f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}$. If the $\lim_{x \rightarrow 0} \left(\frac{1}{ax} + f(x) \right) = \beta$; $\alpha, \beta \in \mathbb{R}$, then $\alpha + 2\beta$ is equal to

(1) 3 (2) 5 (3) 4 (4) 6

Q.54 Let $S_n = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots$ upto n terms. If the sum of the first six terms of an A.P. with first term $-p$ and common difference p is $\sqrt{2026 S_{2025}}$, then the absolute difference between 20th and 15th terms of the A.P. is

(1) 25 (2) 90 (3) 20 (4) 45

Q.55 Let $f(x) = \frac{2^{x+2} + 16}{2^{2x+1} + 2^{x+4} + 32}$. Then the value of $8 \left(f\left(\frac{1}{15}\right) + f\left(\frac{2}{15}\right) + \dots + f\left(\frac{59}{15}\right) \right)$ is equal to

(1) 118 (2) 92 (3) 102 (4) 108

Q.56 If α and β are the roots of the equation $2z^2 - 3z - 2i = 0$, where $i = \sqrt{-1}$, then

$16 \operatorname{Re} \left(\frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}} \right) \cdot \operatorname{Im} \left(\frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}} \right)$ is equal to

(1) 398 (2) 312 (3) 409 (4) 441

Q.57 $\lim_{x \rightarrow 0} \operatorname{cosec} \left(\sqrt{2\cos^2 x + 3\cos x} - \sqrt{\cos^2 x + \sin x + 4} \right)$ is

(1) 0 (2) $\frac{1}{2\sqrt{5}}$ (3) $\frac{1}{\sqrt{15}}$ (4) $-\frac{1}{2\sqrt{5}}$

Q.58

Let in a ΔABC , the length of the side AC be 6, the vertex B be $(1, 2, 3)$ and the vertices A, C lie on the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Then the area (in sq. units) of ΔABC is

(1) 42 (2) 21 (3) 56 (4) 17

Q.59

Let $y = y(x)$ be the solution of the differential equation $\left(xy - 5x^2 \sqrt{1+x^2} \right) dx + \left(1+x^2 \right) dy = 0$, $y(0) = 0$. Then $y(\sqrt{3})$ is equal to

(1) $\frac{5\sqrt{3}}{2}$ (2) $\sqrt{\frac{14}{3}}$ (3) $2\sqrt{2}$ (4) $\sqrt{\frac{15}{2}}$

Q.60

Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{2}\right)$ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $(a > b)$, be $\frac{7}{4}$. Then the absolute difference of the eccentricities of two such ellipses is

(1) $\frac{3-2\sqrt{2}}{3\sqrt{2}}$ (2) $\frac{1-\sqrt{3}}{\sqrt{2}}$ (3) $\frac{3-2\sqrt{2}}{2\sqrt{3}}$ (4) $\frac{1-2\sqrt{2}}{\sqrt{3}}$

Q.61

A and B alternately throw a pair of dice. A wins if he throws a sum of 5 before B throws a sum of 8, and B wins if he throws a sum of 8 before A throws a sum of 5. The probability, that A wins if A makes the first throw, is

(1) $\frac{9}{17}$ (2) $\frac{9}{19}$ (3) $\frac{8}{17}$ (4) $\frac{8}{19}$

Q.62

Consider the region

$R = \left\{ (x, y) : x \leq y \leq 9 - \frac{11}{3}x^2, x \geq 0 \right\}$. The area, of the largest rectangle of sides parallel to the coordinate axes and inscribed in R , is :

(1) $\frac{625}{111}$ (2) $\frac{730}{119}$ (3) $\frac{567}{121}$ (4) $\frac{821}{123}$

Q.63

The area of the region

$\left\{ (x, y) : x^2 + 4x + 2 \leq y \leq |x+2| \right\}$ is equal to

(1) 7 (2) $24/5$ (3) $20/3$ (4) 5

Q.64

For a statistical data x_1, x_2, \dots, x_{10} of 10 values, a student obtained the mean as 5.5 and $\sum_{i=1}^{10} x_i^2 = 371$. He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively. The variance of the corrected data is

(1) 7 (2) 4 (3) 9 (4) 5

Q.65 Let circle C be the image of $x^2 + y^2 - 2x + 4y - 4 = 0$ in the line $2x - 3y + 5 = 0$ and A be the point on C such that OA is parallel to x-axis and A lies on the right hand side of the centre O of C. If B(α, β), with $\beta < 4$, lies on C such that the length of the arc AB is $(1/6)$ th of the perimeter of C, then $\beta - \sqrt{3}\alpha$ is equal to
 (1) 3 (2) $3 + \sqrt{3}$ (3) $4 - \sqrt{3}$ (4) 4

Q.66 For some $n \neq 10$, let the coefficients of the 5th, 6th and 7th terms in the binomial expansion of $(1+x)^{n+4}$ be in A.P. Then the largest coefficient in the expansion of $(1+x)^{n+4}$ is :
 (1) 70 (2) 35 (3) 20 (4) 10

Q.67 The product of all the rational roots of the equation $(x^2 - 9x + 11)^2 - (x-4)(x-5) = 3$, is equal to :
 (1) 14 (2) 7 (3) 28 (4) 21

Q.68 Let the line passing through the points $(-1, 2, 1)$ and parallel to the line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$ intersect the line $\frac{x+2}{3} = \frac{y-3}{2} = \frac{z-4}{1}$ at the point P. Then the distance of P from the point Q(4, -5, 1) is :
 (1) 5 (2) 10 (3) $5\sqrt{6}$ (4) $5\sqrt{5}$

Q.69 Let the lines $3x - 4y - \alpha = 0$, $8x - 11y - 33 = 0$ and $3x - 3y + \lambda = 0$ be concurrent. If the image of the point (1, 2) in the line $2x - 3y + \lambda = 0$ is $\left(\frac{57}{13}, \frac{-40}{13}\right)$, then $|\alpha\lambda|$ is equal to :
 (1) 84 (2) 91 (3) 113 (4) 101

Q.70 If the system of equations
 $2x - y + z = 4$
 $5x + \lambda y + 3z = 12$
 $100x - 47y + \mu z = 212$
 has infinitely many solutions, then $\mu - 2\lambda$ is equal to
 (1) 56 (2) 59 (3) 55 (4) 57

Q.71 Let f be a differentiable function such that $2(x+2)^2 f(x) - 3(x+2)^2 = 10 \int_0^x (t+2) f(t) dt$, $x \geq 0$. Then $f(2)$ is equal to _____.

Q.72 If for some α, β ; $\alpha \geq \beta$, $\alpha + \beta = 8$ and $\sec^2(\tan^{-1}\alpha) + \operatorname{cosec}^2(\cot^{-1}\beta) = 36$, then $\alpha^2 + \beta$ is _____.

Q.73 The number of 3-digit numbers, that are divisible by 2 and 3, but not divisible by 4 and 9, is

Q.74 Let A be a 3×3 matrix such that $A^T A X = 0$ for all nonzero 3×1 matrices $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$.
 If $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ -5 \end{bmatrix}$, $A \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -8 \end{bmatrix}$, and
 $\det(\operatorname{adj}(2(A + I))) = 2^\alpha 3^\beta 5^\gamma$, $\alpha, \beta, \gamma \in \mathbb{N}$, then
 $\alpha^2 + \beta^2 + \gamma^2$ is

Q.75 Let $S = \{p_1, p_2, \dots, p_{10}\}$ be the set of first ten prime numbers. Let $A = S \cup P$, where P is the set of all possible products of distinct elements of S . Then the number of all ordered pairs (x, y) , $x \in S$, $y \in A$, such that x divides y , is _____.